Proof of the causal model

We need to calculate $p(\mathbf{e}|\mathbf{x}, \mathbf{c})$. Applying Bayes' theorem, we have that

$$p(\mathbf{e}|\mathbf{x}, \mathbf{c}) = \frac{p(\mathbf{x}|\mathbf{e}, \mathbf{c})p(\mathbf{e}|\mathbf{c})}{p(\mathbf{x}|\mathbf{c})}.$$
 (1)

If the causal model is captured by the Directed Acyclic Graph (DAG) $\mathbf{c} \to \mathbf{e} \to \mathbf{x}$, we also have that

$$p(\mathbf{x}|\mathbf{e}, \mathbf{c}) = p(\mathbf{x}|\mathbf{e}).$$
⁽²⁾

Applying Bayes' theorem again, we have that

$$p(\mathbf{x}|\mathbf{e}) = \frac{p(\mathbf{e}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{e})}.$$
(3)

Thanks to equations 2 and 3, we can substitute $p(\mathbf{x}|\mathbf{e}, \mathbf{c})$ in equation 1 with $\frac{p(\mathbf{e}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{e})}$ and write

$$p(\mathbf{e}|\mathbf{x}, \mathbf{c}) = \frac{p(\mathbf{e}|\mathbf{x})p(\mathbf{e}|\mathbf{c})p(\mathbf{x})}{p(\mathbf{x}|\mathbf{c})p(\mathbf{e})}.$$
(4)

Now, because $p(\mathbf{e}|\mathbf{x}, \mathbf{c})$ is a probability, we know that

$$\int_{\mathbf{e}} p(\mathbf{e}|\mathbf{x}, \mathbf{c}) d\mathbf{e} = 1.$$
(5)

But, because of equation 4, this also implies that

$$\int_{\mathbf{e}} \frac{p(\mathbf{e}|\mathbf{x})p(\mathbf{e}|\mathbf{c})p(\mathbf{x})}{p(\mathbf{x}|\mathbf{c})p(\mathbf{e})} d\mathbf{e} = 1.$$
 (6)

We can observe that $p(\mathbf{x})$ and $p(\mathbf{x}|\mathbf{c})$ are constant with respect to \mathbf{e} , therefore they can be taken outside the integral:

$$\frac{p(\mathbf{x})}{p(\mathbf{x}|\mathbf{c})} \int_{\mathbf{e}} \frac{p(\mathbf{e}|\mathbf{x})p(\mathbf{e}|\mathbf{c})}{p(\mathbf{e})} d\mathbf{e} = 1.$$
(7)

In the next step, we use the assumption that the prior $p(\mathbf{e})$ is uniform. If the $p(\mathbf{e})$ is uniform, it does not depend on \mathbf{e} , therefore, we can take it outside the integral too:

$$\frac{p(\mathbf{x})}{p(\mathbf{x}|\mathbf{c})p(\mathbf{e})} \int_{\mathbf{e}} p(\mathbf{e}|\mathbf{x})p(\mathbf{e}|\mathbf{c})d\mathbf{e} = 1.$$
(8)

Multiplying on both sides by $\frac{p(\mathbf{x}|\mathbf{c})p(\mathbf{e})}{p(\mathbf{x})}$, we obtain that

$$\int_{\mathbf{e}} p(\mathbf{e}|\mathbf{x}) p(\mathbf{e}|\mathbf{c}) d\mathbf{e} = \frac{p(\mathbf{x}|\mathbf{c}) p(\mathbf{e})}{p(\mathbf{x})}.$$
(9)

At this point, we can substitute $\frac{p(\mathbf{x}|\mathbf{c})p(\mathbf{e})}{p(\mathbf{x})}$ in equation 4 with the integral on the left hand side of equation 9, obtaining

$$p(\mathbf{e}|\mathbf{x}, \mathbf{c}) = \frac{p(\mathbf{e}|\mathbf{x})p(\mathbf{e}|\mathbf{c})}{\int_{\mathbf{e}} p(\mathbf{e}|\mathbf{x})p(\mathbf{e}|\mathbf{c})d\mathbf{e}}.$$
(10)

Note that $\int_{\mathbf{e}} p(\mathbf{e}|\mathbf{x}) p(\mathbf{e}|\mathbf{c}) d\mathbf{e}$ is integated over all values of \mathbf{e} , and therefore it is constant with respect to changes in \mathbf{e} . Thus, in conclusion:

$$p(\mathbf{e}|\mathbf{x}, \mathbf{c}) \propto p(\mathbf{e}|\mathbf{x})p(\mathbf{e}|\mathbf{c}).$$
 (11)