Proof of the causal model

We need to calculate $p(\mathbf{e} \mid \mathbf{x}, \mathbf{c})$. Applying Bayes' theorem, we have that

$$
\begin{equation*}
p(\mathbf{e} \mid \mathbf{x}, \mathbf{c})=\frac{p(\mathbf{x} \mid \mathbf{e}, \mathbf{c}) p(\mathbf{e} \mid \mathbf{c})}{p(\mathbf{x} \mid \mathbf{c})} \tag{1}
\end{equation*}
$$

If the causal model is captured by the Directed Acyclic Graph (DAG) $\mathbf{c} \rightarrow \mathbf{e} \rightarrow$ \mathbf{x}, we also have that

$$
\begin{equation*}
p(\mathbf{x} \mid \mathbf{e}, \mathbf{c})=p(\mathbf{x} \mid \mathbf{e}) \tag{2}
\end{equation*}
$$

Applying Bayes' theorem again, we have that

$$
\begin{equation*}
p(\mathbf{x} \mid \mathbf{e})=\frac{p(\mathbf{e} \mid \mathbf{x}) p(\mathbf{x})}{p(\mathbf{e})} \tag{3}
\end{equation*}
$$

Thanks to equations 2 and 3 , we can substitute $p(\mathbf{x} \mid \mathbf{e}, \mathbf{c})$ in equation 1 with $\frac{p(\mathbf{e} \mid \mathbf{x}) p(\mathbf{x})}{p(\mathbf{e})}$ and write

$$
\begin{equation*}
p(\mathbf{e} \mid \mathbf{x}, \mathbf{c})=\frac{p(\mathbf{e} \mid \mathbf{x}) p(\mathbf{e} \mid \mathbf{c}) p(\mathbf{x})}{p(\mathbf{x} \mid \mathbf{c}) p(\mathbf{e})} \tag{4}
\end{equation*}
$$

Now, because $p(\mathbf{e} \mid \mathbf{x}, \mathbf{c})$ is a probability, we know that

$$
\begin{equation*}
\int_{\mathbf{e}} p(\mathbf{e} \mid \mathbf{x}, \mathbf{c}) d \mathbf{e}=1 \tag{5}
\end{equation*}
$$

But, because of equation 4, this also implies that

$$
\begin{equation*}
\int_{\mathbf{e}} \frac{p(\mathbf{e} \mid \mathbf{x}) p(\mathbf{e} \mid \mathbf{c}) p(\mathbf{x})}{p(\mathbf{x} \mid \mathbf{c}) p(\mathbf{e})} d \mathbf{e}=1 \tag{6}
\end{equation*}
$$

We can observe that $p(\mathbf{x})$ and $p(\mathbf{x} \mid \mathbf{c})$ are constant with respect to \mathbf{e}, therefore they can be taken outside the integral:

$$
\begin{equation*}
\frac{p(\mathbf{x})}{p(\mathbf{x} \mid \mathbf{c})} \int_{\mathbf{e}} \frac{p(\mathbf{e} \mid \mathbf{x}) p(\mathbf{e} \mid \mathbf{c})}{p(\mathbf{e})} d \mathbf{e}=1 \tag{7}
\end{equation*}
$$

In the next step, we use the assumption that the prior $p(\mathbf{e})$ is uniform. If the $p(\mathbf{e})$ is uniform, it does not depend on \mathbf{e}, therefore, we can take it outside the integral too:

$$
\begin{equation*}
\frac{p(\mathbf{x})}{p(\mathbf{x} \mid \mathbf{c}) p(\mathbf{e})} \int_{\mathbf{e}} p(\mathbf{e} \mid \mathbf{x}) p(\mathbf{e} \mid \mathbf{c}) d \mathbf{e}=1 \tag{8}
\end{equation*}
$$

Multiplying on both sides by $\frac{p(\mathbf{x} \mid \mathbf{c}) p(\mathbf{e})}{p(\mathbf{x})}$, we obtain that

$$
\begin{equation*}
\int_{\mathbf{e}} p(\mathbf{e} \mid \mathbf{x}) p(\mathbf{e} \mid \mathbf{c}) d \mathbf{e}=\frac{p(\mathbf{x} \mid \mathbf{c}) p(\mathbf{e})}{p(\mathbf{x})} \tag{9}
\end{equation*}
$$

At this point, we can substitute $\frac{p(\mathbf{x} \mid \mathbf{c}) p(\mathbf{e})}{p(\mathbf{x})}$ in equation 4 with the integral on the left hand side of equation 9 , obtaining

$$
\begin{equation*}
p(\mathbf{e} \mid \mathbf{x}, \mathbf{c})=\frac{p(\mathbf{e} \mid \mathbf{x}) p(\mathbf{e} \mid \mathbf{c})}{\int_{\mathbf{e}} p(\mathbf{e} \mid \mathbf{x}) p(\mathbf{e} \mid \mathbf{c}) d \mathbf{e}} \tag{10}
\end{equation*}
$$

Note that $\int_{\mathbf{e}} p(\mathbf{e} \mid \mathbf{x}) p(\mathbf{e} \mid \mathbf{c}) d \mathbf{e}$ is integated over all values of \mathbf{e}, and therefore it is constant with respect to changes in \mathbf{e}. Thus, in conclusion:

$$
\begin{equation*}
p(\mathbf{e} \mid \mathbf{x}, \mathbf{c}) \propto p(\mathbf{e} \mid \mathbf{x}) p(\mathbf{e} \mid \mathbf{c}) \tag{11}
\end{equation*}
$$

